Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory.

نویسندگان

  • G Major
  • J D Evans
  • J J Jack
چکیده

Analytical solutions are derived for arbitrarily branching passive neurone models with a soma and somatic shunt, for synaptic inputs and somatic voltage commands, for both perfect and imperfect somatic voltage clamp. The solutions are infinite exponential series. Perfect clamp decouples different dendritic trees at the soma: each exponential component exists only in one tree; its time constant is independent of stimulating and recording position within the tree; its amplitude is the product of a factor constant over that entire tree and factors dependent on stimulating and recording positions. Imperfect clamp to zero is mathematically equivalent to voltage recording with a shunt. As the series resistance increases, different dendritic trees become more strongly coupled. A number of interesting response symmetries are evident. The solutions reveal parameter dependencies, including an insensitivity of the early parts of the responses to specific membrane resistivity and somatic shunt, and an approximately linear dependence of the slower time constants on series resistance, for small series resistances. The solutions are illustrated using a "cartoon" representation of a CA1 pyramidal cell and a two-cylinder + soma model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Very-low-voltage enhancement-mode MOSFETs can play a significant role in low-voltage designs

Voltage clamps for protecting low-voltage dc circuits require a new approach to circuit design. Many commonly used voltage clamps were built for systems of 5 V or higher, but lower-voltage systems require distinctive clamping abilities. The use of very-low-voltage precision enhancement-mode MOSFETs play a pivotal role in designing voltage clamps in low-voltage applications. Today’s electronic s...

متن کامل

High Gain DC-DC Converter using Active Clamp Circuit (RESEARCH NOTE)

In this paper, a boost converter with a clamp circuit is proposed for high intensity discharge (HID) lamp application. The clamp circuit provides zero voltage turn on for both main and clamp switches. Compared to conventional boost converters, the proposed converter has the following advantages: (i) high voltage gain without suffering from extreme duty ratio, (ii) low stress on the switches and...

متن کامل

Space-clamp problems when voltage clamping neurons expressing voltage-gated conductances.

The voltage-clamp technique is applicable only to spherical cells. In nonspherical cells, such as neurons, the membrane potential is not clamped distal to the voltage-clamp electrode. This means that the current recorded by the voltage-clamp electrode is the sum of the local current and of axial currents from locations experiencing different membrane potentials. Furthermore, voltage-gated curre...

متن کامل

Lemp Effects on Control Cables in High-voltage Substations

This paper presents the numerical simulations of a direct lightning stroke into an open air HV (high-voltage) substation. Lightning current flowing through the conductive earthed structures over the ground and in grounding grids induced transients in low-voltage control cables. In calculation the different striking points, soil parameters and arrangements of cables have been taken into account.

متن کامل

Agonist- and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III.

Spinal cord neurons is dissociated cell culture were loaded with the calcium indicator arsenazo III using the whole-cell patch-clamp recording technique. Under voltage-clamp, depolarizing voltage steps evoked transient increases in absorbance at 660 nm, with no change at 570 nm, the isosbestic wavelength for calcium-arsenazo III complexes. The optical response occurred with a threshold depolari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 65 1  شماره 

صفحات  -

تاریخ انتشار 1993